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A discrete vortex method for the non-steady 
separated flow over an airfoil 

By J. KATZt 
Ames Research Center, NASA, Moffett Field, California 94035 

(Received 20 December 1979 and in revised form 4 March 1980) 

A discrete vortex method was used to analyse the separated non-steady flow about a 
cambered airfoil. The foil flow modelling is based on the thin lifting-surface approach, 
where the chordwise location of the separation point is assumed to be known from 
experiments or flow-visualization data. Calculated results provided good agreement 
when compared with the post-stall aerodynamic data of two airfoils. Those airfoil 
sections differed in the extent of travel of the separation point with increasing angle 
of attack. Furthermore, the periodic wake shedding was analysed and its time-depen- 
dent influence on the airfoil was investigated. 

1. Introduction 
The post-stall aerodynamic behaviour of straight-wing General Aviation aircraft 

has recently been a subject of increased interest. This has been partially due to the 
increased number of stall and spin accidents where the partially stalled lifting surfaces 
might cause the loss of lateral control. In  order to reduce spin-entry tendencies, 
several methods have been applied. One of these methods was investigated by Feistel, 
Anderson & Kroeger (1978), who tried to reduce post-stall rolling moments by pre- 
scribing local wing separation in a predetermined manner. It was found in these 
studies that standard analytical techniques to predict the influence of partially 
separated section on the attached regions of a straight leading-edge wing were in- 
adequate. Therefore, the present work is concentrated on developing a two-dimen- 
sional vortex lattice method (VLM) to simulate two-dimensional airfoil data. This can 
provide the strength and wake geometrical structure to a three-dimensional VLM 
to allow the calculation of the influence of the wing-separated section on the non- 
separated regions. 

Discrete-vortex methods have been used by numerous authors, and a list of %he 
application of these methods is included in Clements & Maul1 (1975) and Sarpkaya 
(1979). The separated non-steady wake shedding behind cylindrical bodies is still 
being widely investigated. Marshall & Deffenbaugh (1974) calculated the three- 
dimensional separated flow behind cylinders by solving the crossflow problem via the 
discrete vortex method. Mendenhall, Spangler & Perkins (1979) used a similar tech- 
nique to determine the crossflow around circular and non-circular bodies. They applied 
the Stratford (1959) criteria for the prediction of the separation point. The wake 
dynamics of separated flow behind a cylinder were studied by Sarpkaya & Shoaff 
(1979). They introduced a rediscretization method for wake roll-up and a circulation 
reduction scheme to bring calculated results closer to experimental observations. 
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The principles of the discrete vortex method for modelling airfoils with boundary- 
layer separation were summarized by Sears (1976). The vortex shedding behind a 
flat plate was analysed by Sarpkaya (1975), who calculated the strengthof the emanat- 
ing vorticity layers by the shear velocity method, observed experimentally by Fage & 
Johansen (1927). A different method for the calculation ofthe strength of shedvorticity 
was applied by Kiya & Arie (1977). They introduced the nascent vortices at a fixed 
location, while its strength was calculated by the Kutta condition. The literature 
cited above shows the effort conducted to  reduce the viscous problem into a simpler 
poOentia1 model. However, there are codes like the one developed by Mehta (1977) 
which are based on the solution of the Navier-Stokes equations. The major drawbacks 
of these codes are the large computer times and memory required relative to the time 
and memory for the much simpler discrete-vortex methods. The present work is an 
extension of the discrete-vortex methods that account for camber effects and for cases 
where the frontal separation point is significantly behind the leading edge. This type 
of separation is more realistic for the modelling of the post-stall aerodynamics of air- 
foils with rounded leading edges and can lead to better agreements with experimental 
results. 

2. Analytical model 

One of the major reasons for the success of the potential theory approach for the 
solution of the flow field around an attached airfoil is the introduction of the Kutta 
condition. This condition determines the circulation generated a t  the viscous shear 
layer on the foil by requiring zero circulation at  a given location (the trailing edge, in 
the case of airfoils). That approach can be extended further to allow the study of the 
flow around separated airfoils. In this case, an additional shear layer emanates from 
a given point on the airfoil surface. The strength and the location of this second 
separation point is then to be supplied. This approach was successfully applied by 
several authors, such as Sarpkaya (1975) or Kiya & Arie (1977) who placed the 
separation point of a flat plate at  its leading edge. 

In the present study, the separation point location is not necessarily a t  the leading 
edge. It is assumed that the location of the separation point, which is a function of 
foil curvature and Reynolds number (laminar or turbulent), is known from experi- 
ments, flow visualization (McAlister & Carr 1978) or independent calculation schemes. 
Such schemes were used by Mendenhall et al. (1979) and Sarpkaya & Shoaff (1979) 
for the study of separated flow behind cylinders. They used separation criteria based 
on the local pressure gradient such as the Stratford (1959) criteria. Since the location 
of the separation point is assumed to be known, only the thin wing lifting problem 
is analysed. A further extension of the present work might include airfoil thickness to 
allow the additional calculation of the separation point location for the given Reynolds 
number and foil geometry. 

The above considerations lead to the definition of the thin cambered wing problem 
(figure 1) with a known separation point Xsep (which is the time-average position of 
the oscillatory motion). Furthermore, it is assumed that the surrounding fluid is in- 
compressible, and irrotational over the whole region, excluding the wing and its wake 
elements. 
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FIGURE 1. Schematic description of model. 

The continuity equation in that region is defined in a stationary co-ordinate system 
(z*-z* (figure 1)): 

where $* is the time-dependent velocity potential, consisting of the foil potential $:, 
wake potential $$, and the separated shear-layer potential @. 

(2) 

v=$* = 0 (1) 

$(x*, z*, t*) = 4; + $5 + &+ = $*. 
The boundary conditions for equation (1) are as follows. 
(a )  There is no flow through the foil surface z* = h(x*, t*)  = h*, 

(3) 

where h* stands for the momentary camber of the wing, as indicated in figure 1. 
(a) The velocity induced by the foil motion decays far from the foil: 

V$* = 0 as IX*I) Iz*I +oo. (4) 

In addition, the momentary strength of the two emanating shear layers is to be 
calculated. The circulation shed at  the separation point Xsep can be calculated by 
performing the line integral of equation (5) enclosing a portion of the wake behind 
Xsep, but not crossing the foil, 

- drs = gf Vds  
dt . Dt 

where rs is the separated wake circulation, V is the velocity vector, and ds is a path 
element along the integration curve. This integral might be calculated a t  any momen- 
tarily non-rotating co-ordinate system, such as the foil-attached x-z system. By 
assuming the existence of average velocities V ,  and s (figure 1) at the upper and lower 
edges of the shear layer, an approximate expression can be derived: 

The validity of this simple expression was demonstrated experimentally by 
Page & Johansen (1927)) and i t  was used successfully in discrete vortex methods by 

11-2 
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numerous authors, e.g. Mendenhall et al. (1979), Marshall & Deffenbaugh (1974) and 
Sarpkaya (1975, 1979). 

The instantaneous strength of the vortex sheet, shed a t  the trailing edge, is to be 
calculated by Kelvin’s theorem: 

ar ar, ar, d r  -- - -+-+A = 0 (for all t), 
at at dt at (7) 

where r, and rW are the foil and wake circulations, respectively. The above order of 
obtaining the strength of the two shear layers by equations (5) and (7) was chosen as 
a result of computer programming convenience. However, a reversed order for this 
solution might be used, thus dr,/dt would be calculated by applying equation ( 5 )  at 
the trailing edge and then dr, /dt  is determined from equation (7). 

The momentary pressure is calculated by the time-dependent Bernoulli’s equation : 

In  order to attain a simplified solution of the boundary-value problem of equations 
(1)-(4), it is to be stated in the x-z co-ordinate system which might rotate at the 
angular velocity o. That is done following the transformation suggested by Katz & 
Weihs (1978) resulting in the following relations between the derivatives of the two 
co-ordinate systems: 

a a a 
ax* ax a x ,  

- cosa-+sinu- -- 

a a a 
ax* ax a x *  - = -sina-+cosa- 

I 
(9) 

a a J  a a 
at* ax 

- [zw + U(t ) ]  - - [ x u  - W(t) l&+ g ,  -- 

where a is the foil momentary angle of attack, and U(t ) ,  W( t )  are the components of 
the far velocity Vm(t) to the direction of the x, x co-ordinates, respectively. 

The transformed continuity equation is: 

V2# = 0, (10) 

(11) 

However, the velocity potentials g5w and #8 consist of discrete vortices whose strengths 
are calculated a t  previous time steps, while the latest two nascent vortices are calcu- 
lated by equations (6) and (7). Therefore, the only unknown part of the potential # 
is g50 that has to fulfill the continuity equation: 

(4% 2, t )  = 90 + #w + 9 s  = # a  

V2$ho = 0. (12) 

The transformed boundary conditions are 

[a:; 21 a/ = [ u ( t ) + L + - + L  a9 a$w a+ - + - + [ x ~ - W ( t ) ] -  an ah -+- . (13) 

a x  o = o  ax ax ax 1 ax at 
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Here it was assumed that the momentary local camberline h(x, t )  is much smaller than 
the foil chord c(h/c  < 1). Therefore, boundary condition (13) is fulfilled along the z 
co-ordinate ( z  = 0). The transformed equation (4) becomes: 

Vq5,=0 as I x l , I z I - f o o .  (14) 

That condition actually doesn’t change because the velocity potential # is defined in 
the x*-z* system and the transformation is used only to define the boundary condition 
in a more convenient system. 

The transformed Bernoulli equation is 

The solution of equations (10) through (14) can be obtained by representing the 
foil with distributed vortices along the chord line. The strength of this vortex sheet 
can be solved by assuming discrete vortices (vortex lattice) or by a continuous vortex 
distribution, stated in terms of the following Fourier equation: 

C 
x = - ( 1  - cos e). 

2 

The above vortex distribution includes the suction peak-term coefficient A,. This 
is included because most airfoils have rounded leading edges and sharp trailing edges, 
therefore some portion of the suction peak (ahead of the separation point) exists even 
at very high angles of attack. This phenomenon was shown experimentally in several 
works, such as Pinkerton (1937) or McCullough & Gault (1961). However, in the case 
of symmetrical trailing and leading edges, and while the foil is perpendicular to the 
flow, the coefficient A, should be neglected. 

The Kutta condition a t  the trailing edge (1 8) is already fulfilled in equation (1 6) : 

y ( c , t )  = 0.  (18) 

There are no further requirements for the complete solution of the problem, however, 
additional ‘Kutta-type’ conditions might be added a t  the frontal separation point to 
boost wake-shedding oscillations. 

By substituting equations (16) and (17) into boundary condition (13), the solution 
of the Fourier coefficients is obtained: 

These integrals can be performed for a given chordwise downwash distribution 
(aq5/8z),=, of equation (13). 
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The normal force distribution dF/dx  is obtained from equation (16) by omitting 
the symmetrical pressure terms that do not contribute to the lift, 

where the superscripts - and + represent the lower and upper surface of the foil. The 
derivatives of the potential due to the wake elements are obtained by summing up 
their influences, while the foil-induced velocities are 

here a$o/azIa=fo is defined by equation (13). 

The time derivative of the potential is 

where u, and u, are the trailing edge and the separated wake-induced 
respectively. As the various derivatives of the velocity potential are found, the normal 
force distribution of equation (21) is integrated. 

(23) 

(24) 

(25) 

velocities, 

+Ed 8 at ( A 2 V r n ) ) + ~ / o c A d x .  (26) 

The lift and drag coefficients are 

In the calculation of the drag coefficient, the 'thin plate leading-edge suction force' 
was neglected. This leads to better agreement with high angle-of-attack experimental 
results, as pointed out by Kiya & h i e  (1977). 

3. The vortex wake and method of solution 
The strength of the two nascent vortices a t  each time interval was calculated,by 

equations (6) and (7). The upper and lower components of the shear velocity V ,  and 
are calculated by summing up ell the velocity components a t  those points (figure 1): 

V,  = (Vrn+F+&++)u, (29) 

6 = (V+y+KY+K),, (30) 
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where V,, V,, and V ,  are the foil, wake, and separated wake-induced velocities, respect- 
ively. The latest separated vortice yz is found according to equation (6) 

where 

This particular scheme was used because it stabilized the iteration procedure 
involved with the calculation of the trailing edge wake-shedding process (Will be 
explained later in this text). 

The coefficient C, is a circulation reduction factor which was used by several authors 
in order to get better agreements with experiments (Mendenhall & Spangler 1979). 
I n  the above work, as well as in the present work, C, = 0.6 was assumed. However, 
there are some other methods of achieving wake-circulation reduction, as has been 
demonstrated by Sarpkaya & Shoaff (1979). They introduced a wake-rediscretization 
method that reduced the vorticity of the vortices in the proximity of boundaries or 
other vortex elements. In addition, their method reshaped the roll-up process, thus 
producing a smoother wake roll-up scheme. The effect of those various methods on 
the Strouhal number is still to be determined. Since the major scope of the present 
study is to show a simple simulation of two-dimensional airfoil data over a wide 
range of angle of attack, the wake circulation reduction was not studied in detail, 
however, further studies must include such considerations. 

The coefficient C2 of equation (31) was introduced owing to numerical considerations 
in order to allow a flexible location for the measurement of the shear velocity com- 
ponents V ,  and (see figure 1). It was found that a too close positioning of those points 
to the vortex sheet leads to strong fluctuations in the shear velocity. The relocation 
of those points at a distance in each side of the separated wake, combined With the 
amplification factor C2, resulted in a stable periodic wake shedding. For the calculated 
results, shown later on, the time intervals 0.05 < At .Vm/c < 0.2 were used with the 
corresponding values of 8.0 

The strength of the latest vortex shed at the trailing edge y& is determined by 
equation (7) : 

C, 2 3-5. 

i c 
ZYr:: 

-=- AI' At A I ' , + A ( z l y ' ) +  At At At ) = 0, (33) 

where yr and y$ are the separated and trailing-edge vortex elements. The foil circu- 
lation I?, is calculated by a chordwise integration of the foil circulation, 

Since equation (33) is fulfilled a t  any t ,  the calculation of the nascent vortex is 
simplified : 

(35) 

The bound vortex strength I?, of equation (34) is dependent on the influence of the 
wake (including the latest vortices) through boundary condition (1 3). Therefore, the 

r$ = - (AI'j+ yj). 
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strength of the latest vortex shed at the trailing edge was calculated iteratively by the 
Newton-Raphson method (to fulfil equation (35)) : 

wherej counts the iterations at each time step, and P(y$), is defined as 

Convergence to accuracy of 0.1 yo is obtained within a 3-5 iteration. 
For the case where the foil vorticity is represented by discrete vortices, this iterative 

scheme is not required. This method was not adopted in the present work since that 
approach might result in higher computational times for similar accuracies. 

The time-dependent solution of the flow field at any time interval is attained as 
follows. First, the foil downwash distribution (13) is calculated while assuming known 
strength of nascent vortices. Then the foil circulation is solved by integrating (19) 
and (20). Finally, the latest separated vortex strength was calculated using (31)’ 
while the strength of the nascent trailing-edge vortex was iterated as in (36). 

As the solution for the vortices’ strength is found, the pressure distribution and 
forces are evaluated (26). The range of time interval At used was 

0.05 < (At x V,)/C < 0-2, 

and the main variation observed in that interval was a slight increase in Strouhal 
number, with the reduction of time step. As the momentary flow field is solved, the 
wake shedding and convection is performed. At each time interval, the vortices are 
placed midway along the path covered by the separation points during that period. 
This vortex positioning seems to minimize numerical error due to vortex sheet dis- 
cretization, at the vicinity of curved streamlines (Clements 1973). The momentary 
vortex roll-up at any time step was obtained by the corresponding motion of each 
vortex element along the foil wakes-induced streamlines. 

In  the present work, special procedures designed to save computer time, such as 
vortex combination (Kiya & Arie 1977; Sarpkaya 1975), were not used since compu- 
tational times were minimal (less than 20s CDC-7600 for the data appearing in 
figures 2-5). 

The oscillation of the separation point that plays an essential role in the actual 
oscillatory wake shedding by the viscous boundary layer (Sarpkaya 1975) was achieved 
by applying a ‘Kutta-type’ condition at the separation point. That condition intro- 
duced a slight vertical displacement of the nascent vortex to fulfil the zero-slip con- 
dition a t  the separation point. 

An extension of the present work to include the foil thickness effect can provide a 
better computational scheme for the separation point, whereas the experimental 
information is still very limited. 
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FIGURE 2. Vortex pattern behind a separated symmetrical airfoil. 
a = 30°, V,At/c = 0.1, X,,/C = 0.06. 
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C 

4. Results for periodic wake shedding 
The periodic wake shedding behind an inclined airfoil with a separation point at 

Xsep/c = 0-5 is shown in figure 2. It is assumed that the foil leading edge is rounded 
and the separation is developed by a gradual forward motion of the separation point 
along the chord (starting a t  the trailing edge) when increasing the angle of attack. 
The four diagrams of figure 4 show that the upper vortex sheet conglomeration and 
chronological order is less disturbed than the roll-up of the lower sheet. That is due 
to the rather uniform flow above the foil, while the lower roll-up process is distorted 
by the already rolled-up upper sheet. The drifting motion of the wake behind the 
foil has a stretching effect on the discrete vortex concentration, resulting in further 
distortions in the roll-up process. Apart from those distortions and numerical errors, 
there is an additional instability (Batchelor 1970). This instability is developing as 
the tangential velocities a t  the core of a highly rolled-up vortex concentration are 
increasing and the centrifugal forces are resulting in a vortex breakdown. The numeri- 
cal accuracy of the above wake-calculation method was demonstrated by Katz & 
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FIGURE 4. Periodic variation of shear velocity and foil circulation. 
X,,/C = 0.05, u = 30". 

Weihs (1978 b) who showed good agreement between calculated wake shapes behind 
non-separated oscillating airfoils and flow visualizations. 

The above numerical vortex wake roll-up calculations show similarity to existing 
flow-visualization experiments, such as Fage & Johansen (1927) or McAlister & Carr 
(1978). Corresponding flow visualization for the calculated wake shapes of figure 2 
has not been conducted so far a t  Ames' Water Tunnel owing to strong three-dimen- 
sional effects. Similar difficulties a t  high-angle-of-attack flow visualization were 
reported by Moss & Murdin (1968). 
The time-dependent vorticities and force coefficients are plotted in figures 3-5. 

The foil was suddenly set into motion and the oscillatory data were computed. The 
separation point was set from start to be at Xsep/c = 0.05, whereas the motion of that 
point should actually have been started at  the trailing-edge vicinity and gradually 
moved forward. Since the purpose of those calculations was to demonstrate the process 
of achieving periodic oscillation, the exact physics of the sudden acceleration were not 
investigated . 

Figure 3 shows the vorticity shed from the separation point and from the trailing 
edge. The non-symmetric wake shedding shown is a result of Kelvin's theorem applied 
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FIUURE 5. Periodic variations of lift and drag coefficients. Xae$c = 0-05, a = 30". 

in the present model. That is, the foil circulation (figure 4) varies in such a way that 
there is zero net circulation generation a t  all t .  The shear velocity oscillations u,h/Vm 
of the separated wake in figure 4 also have a sinusoidal shape, unlike the calculated 
results of Kiya & Arie (1977). 

Figure 5 shows the periodic variation of the lift coefficient C, and drag coefficient 
C,. The phase is shifted from that of the foil circulation on figure 4. This is a result of 
the a#/at term in equation (21). The Strouhal number (8t = 0.18) for this calculation 
is in close agreement with several experimental results. Here the Strouhal number 
has been defined as 

fc sin a st = - 
vm 

wherefis the wake-oscillation frequency. Fage & Johansen (1927) found values about 
St = 0.148 for flat plates, while Roshko (1954) showed that a universal wake-based 
Strouhal number (including flow over separated flat plates) has the value of 8t = 0.15- 
0.18. Both of these works investigated separation patterns similar to a sharp leading- 
edge flat-plate separation. In the present work, however, it is assumed that the flow 
moves around the leading edge and separates only at a further point, resulting in a 
smaller wake cross-section. This results in a universal St number that is close to 
Roshko's (1954) results. 

5. High-angle-of-attack airfoil data calculation 
In order to demonstrate the ability of the method, two different types of airfoil 

data were simulated. The only input for the calculation was the separation point 
location. This location is generally a function of Reynolds number and geometry 
(foil curvature and angle of attack) and might be obtained by either experimental 
flow visualization or calculated by some separation criteria. 

Figures 6 and 7 show several aerodynamic parameters of an airfoil (NACA 0012) 
as a function of angle of attack, for Re = 1-8 x lo6. The simulation was done by 
assuming a fully attached flow (Xscp = 1, on figure 7 ) t  up to OL = 14" and an almost 

t For tho input of Xep = 1, tho computer code assumes dl",/dt = 0 and porforms a linear 
thin-wing calculation (ae in Kata & Woihs 1978a). 
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FIGURE 6. Calculated data for wide range of angle of attack for airfoil section NACA 0012. 
0, Critzos et al. (1955), two-dimensional results for Re = 1-8 x loE; -, present calculation. 
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The assumed motion of separation point for an airfoil section NACA 
resulting shear-layer strength and Strouhal number. -, theory. 

0012 and 

complete separation (Xsep = 0.05) for a > 20". At the intermediate region 

14" < a < 20", 

Xsep was chosen to fit the foil data. The experimental points stand for the data 
measured by Critzos, Heyson & Boswinkle (1955) and seem to follow reasonably the 
theoretical time average lift EL and drag CD coefficient values in figure 6. The average 
rate of vorticity shed a t  either separation point @/at ,  as a function of angle of attack, 
is shown in figure 7. The Strouhal-number prediction seemed to be constant for a 
wide range of a, and slightly lower in the angle-of-attack range for partial separation. 
(The author found no experimental information about this region.) 

Figures 8 and 9 show calculation and experimental results for the cambered NACA 
63,-415 section that is being used on several general aviation aircraft. Here the separ- 
ation starts to develop at low angles (a = 8") and then gradually moves forward, as 
angle of attack increases, resulting in higher lift losses (figure 9). That process continues 
until a sharp forward motion of the separation point occurs a t  01 = 18"- 19". Then 
this motion advances until a = 22" where full separation is obtained. 

The time-average lift and drag coefficients are plotted in figure 8. The triangle 
represents the airfoil data obtained by Abbott, Doenhoff & Stivers (1946). In  general, 
there are very little experimental data available on post-stall characteristics of airfoils. 
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FIUuRE 8. Calculated data for wide range angle of attaak for airfoil NACA 63,-415. A, Abbott 
et a,?. (1945), two-dimensional results for Re = 6 x 106; 0, Feistel et al. (1978), aepect ratio = 7.5, 
Re = 1.5 x 106; -, present calculation. 
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FIUTJRE 9. The assumed motion of separation point for an airfoil section NACA 63,-415 
and resulting shear-layer strength and Strouhal number. -, theory. 

CY (deg.1 

For that reason, the circles in figure 8 represent the only other data known to the 
author about that airfoil. This experiment was conducted at the Arnes 7- by 10-foot 
wind tunnel in connexion with the aircraft post-stall studies of Feistel et al. (1978). 
The wing section was tested a t  Reynolds number 1.5 x 108 and had an aspect ratio of 
7.5. Three-dimensional wing correction for those data was not made, since this correc- 
tion is expected to be smaller a t  the separated flow region than it is in the linear region. 

The average strength of the vorticity shed at the separation points a r / a t  and the 
Strouhal number are plotted in figure 9. In  this case too, for the angle-of-attack range 
of the partial separation, a reduction in Strouhal number is indicated as in figure 7. 

6. Conclusion 
The two-dimensional discrete-vortex method shown here has been successfully used 

to simulate airfoil section lift and drag data over a wide range of angle of attack. 
Furthermore, the periodically varying forces and vortex-wakes' roll-up has been 
calculated. This method of representing airfoil data can be used as an integral part 
of a three-dimension vortex lattice panelling method, where the influence of separated 
flow on the attached region is to be calculated. The inclusion of thickness effect with 
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established separation criteria should lead to a further improvement in the above 
results by allowing the calculation of the separation point for given Reynolds number 
and foil geometry. 
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